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Abstract 

In the paper, a parametric Fourier series based 
model (FSBM) for or as an approximation to an arbi- 
trary nonminimum-phase linear time-invariant (LTI) 
system is proposed for statistical signal processing ap- 
plications where a model for LTI systems is needed. 
Based on the FSBM, a (minimum-phase) linear pre- 
diction error (LPE) filter for amplitude estimation of 
the unknown LTI system together with the Cramer Rao 
(CR) bounds is presented. Then an iterative algorithm 
for obtaining the optimum mean-square LPE filter with 
finite data is presented which is also an approximate 
maximum likelihood algorithm when data are Gaus- 
sian. Then three iterative algorithms using higher- 
order statistics with finite non-Gaussian data are pre- 
sented for estimating parameters of the FSBM followed 
b y  some simulation results to support the eficacy of 
the proposed algorithms. Finally, we draw some con- 
clusions. 

1. Introduction 

In many statistical signal processing areas such 
as signal modeling, power spectral and polyspectral 
estimation, system identification, deconvolution and 
equalization, a widely known problem is the identi- 
fication and estimation of an unknown linear time- 
invariant (LTI) system h(n) driven by an unknown 
random signal u(n) with only a given set of output 
measurements x(n)  

03 

x ( n )  = U(.) * h(n) = u(k)h(n - k )  (1) 
k = - o o  

~~ 
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The system function H ( z )  is often modeled as a para- 
metric rational function such as autoregressive (AR) 
model, moving average (MA) model and autoregressive 
moving average (ARMA) model, and therefore find- 
ing a rational model approximation to the system from 
data becomes a parameter estimation problem. 

Recently, Chien, Yang and Chi [l] proposed a para- 
metric cumulant based method for estimating the 
phase of the unknown system h(n) through allpass 
filtering of measurements x(n)  when x(n)  is non- 
Gaussian. Their method is applicable for both 1-D and 
2-D systems. They used a Fourier series based model 
(FSBM) for an allpass filter which leads to a consistent 
estimate for the system phase by maximizing a single 
absolute higher-order cumulant of the allpass filter out- 
put. 

In this paper, an FSBM for or as an approxima- 
tion to  an arbitrary nonminimum-phase LTI system is 
proposed for applications in the aforementioned statis- 
tical signal processing areas. A linear prediction error 
(LPE) filter based on the FSBM for amplitude estima- 
tion of the system is proposed, and then estimation of 
FSBM (amplitude and phase) parameters is presented 
followed by some simulations results and conclusions. 

2. Nonminimum-phase FSBM 

Assume that h(n) is a real nonminimum-phase LTI 
system with the frequency response H ( w )  = H ( z  = 
exp{jw}) = H*(-w)  defined as 

I P  P 

i= 1 I 
Two advantages of the pth-order nonminimum-phase 
FSBM defined by (2) over the rational model (i.e., AR, 
MA and ARMA models) for stable LTI systems are 
discussed as follows. 
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The FSBM given by (2) is always a stable IIR system 
no matter whether it is causal or noncausal. Therefore, 
in practical applications where the system to be de- 
signed is a noncausal stable system such as noncausal 
inverse filter l / H ( w )  (when h(n) is not minimum- 
phase) in blind deconvolution and channel equaliza- 
tion, the FSBM given by (2) is more suitable than the 
ARMA model because the stability issue is never exis- 
tent for the former, thus leading to more efficient design 
and processing procedure. - 

The complex cepstrum h(n) (inverse Fourier trans- 
form of ln[H(w)]), which has been used in speech de- 
convolution, source separation of speech signals and 
seismic deconvolution, associated with the FSBM given 
by (2) can be easily shown to be 

- 
h(n) = ; Zf, CK{S(n + 2)  + S(n - 2 ) )  

++E:==, pi{s(n + 2) - 6(n - i)} (3) 

without need of finding poles and zeros of the system 
[2] as the ARMA model requires. 

Next, let us present minimum-phase FSBM and all- 
pass FSBM. The FSBM for H ( w )  given by (2) can also 
be expressed as 

H ( w )  = HMP(w) ' HAP(w) (4) 
where the FSBM 

f w  

z=1 
( 5 )  

can be shown to be a causal stable minimum-phase 
system with IHMP(w)I = 1H(w)I and h ~ p ( 0 )  = 1, and 
H ~ p ( w )  is also an allpass FSBM given by 

P 

(6)  

where 
yz = c l 2  + pi (7)  

3. FSBM for LPE filters 

Let us briefly review the conventional LPE filter for 
ease of later need for the presentation of the FSBM for 
LPE filters. 

A. Conventional LPE filters 

Assume that z(n) is a real stationary random pro- 
cess modeled by (1) where h(n) is a stable LTI system 
driven by a white noise u(n) with zero mean and vari- 
ance u2.  The conventional pth-order LPE filter [3] 

D 

i=l 

(a causal FIR filter) processes z (n)  such that the pre- 
diction error 

P 

e(n) = z(n)  * a, = z(n) + akz(n  - k )  (9) 

has minimum variance or average power E[e2(n)]. The 
optimum LPE filter x p ( z )  is minimum-phase and can 
be obtained by the following orthogonality principle: 

k=l 

E[e(n)z(n - k ) ]  = 0, k = 1 , 2 ,  . . . ,p (10) 

leading to a set of symmetric Toeplitz linear equations 
of ap = ( a l ,  ..., When z (n)  is an AR(p) Gaussian 
process, for any unbiased estimates Z p  and u2 with 
finite data, their covariance matrix is lower bounded 
by the following Cramer Rao (CR) bounds [3]: 

A 

where N is the total number of data and R,, = E[xxT] 
in which x = (z(n), ..., z(n - p + l))T. 

B. LPE filters with FSBM 

Let the pth-order LPE filter wp(n) be a causal stable 
minimum-phase IIR filter with wp(0) = 1 and 

l v  P 

\ i=l i=l 

and thus the prediction error is given by 
CO 

e(n) = z (n)  * wp(n) = z(n) + wp(IC)z(n - k j  (13) 

Note that we have used the same notations ai for pa- 
rameters of both the proposed FSBM LPE filter V p ( w )  
and the conventional LPE filter A p ( z ) .  The optimum 
LPE filter e p ( w )  is described in the following theorem. 

Theorem 1. Assume that H ( w )  is an FSBM given 
by (2) with order equal to  q instead of p ,  and e ( n )  is 
the prediction error given by (13) with the LPE filter 
order p 2 q. Then the optimum LPE filter c p ( w )  = 
1 /HMp(w)  with min{E[e2(n)]} = E[u2(n)] = 2. 

The optimum prediction error e(n) must satisfy 
6'E[e2(n)]/aak = 0 from which one can prove the fol- 
lowing orthogonality principle: 

(14) 

However, (14) forms a set of nonlinear equations up. 
Nevertheless, e (n )  will be a white process as p is suffi- 
ciently large which implies that V p ( w )  = A p ( w )  (iden- 
tical whitening filter) for p = ca. 

k = l  

E[e(n)e(n - IC)] = r e e ( k )  = 0, IC = 1 ,2 ,  . . . ,p 

h h 
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Based on Theorem 1, an iterative algorithm is used 
to estimate or find an approximation to  H M P ( W )  with 
finite data z(O), z(1) ,  ..., z ( N  - 1) as follows: 
Algorithm 1. Amplitude estimation 

(S l )  Set p,,, (maximum of p ) ,  parameter L ,  incre- 
ment parameter s 2 1, convergence parameter c 
and t = 0 (iteration number). 

‘(S2) Set t = t + 1, p = s x t and up = ( a l ,  ..., a p ) T .  
Search for the minimum of the objective function 

and the associated optimum Gp by a gradient 
type iterative optimization algorithm (such as the 
well-known Fletcher-Powell algorithm) with the 
initial condition up(0) = (ii:-s, O T ) T .  

(S3) If p I. pmax and IJ(6p) - J ( ~ p - - s ) l / J ( ~ i p - - s )  2 <, 
go to (S2), otherwise 

A 

HMP(W) = l/Qp(w) (or Gi = -&) (16) 
h 

n2 = J ( G p )  (17) 

The optimum prediction error e(.) = z(n) * Gp(n) 
corresponds to amplitude equalized data, and the gra- 
dient of J(ap)  with respect to  ak needed in ( S 2 )  can 
be shown to be 

2 N-l aJ(ap> = 2Pee(IC) = - e(n)e(n - k) (18) 
n=L dak N - L  

When H ( w )  is a pth-order FSBM and ~ ( n )  is Gaus- 
sian, it can be shown that both &p = -Gp and u2 
are approximate maximum-likelihood estimates. More- 
over, the CR bounds associated with any unbiased es- 
timates GP and u2 are given by 

A 

h 

where I is a p x p identity matrix. Note that the CR 
bounds associated with AR parameters (see (11)) de- 
pend on correlations of z (n) ,  while those associated 
with ai are uniform and independent of correlations of 
.(TI). The CR bound associated with o2 is the same 
for both FSBM and AR model. 

4. Estimation of FSBM parameters 

In this section, further with the assumption that 
u(n) is non-Gaussian with nonzero Mth-order (2 3) 

cumulant (and thus z (n )  is also non-Gaussian), three 
iterative algorithms are to be presented for the estima- 
tion of parameters of the FSBM H ( w )  given by (2) .  

The first two algorithms estimate the system ampli- 
tude using Algorithm 1 and system phase using Chien, 
Yang and Chi’s phase estimation algorithm [l] which 
maximizes a single absolute Mth-order (2 3) sample 
cumulant, denoted l ( ? ~ , ~ l ,  of the phase equalized (all- 
pass filtered) data 

Y(n) = z (n)  * SAP(n) (20) 

where gAP(n) is a pth-order allpass FSBM 

P 

(21) 

It has been shown in [l] that the optimum EAP(W) 
turns out to be a phase equalizer, i.e., 

arg{EAp(w)) = - arg{H(w)} + WT (22) 

Because I ~ M , ~ )  is a highly nonlinear function of bi, one 
can use gradient type iterative algorithms for finding 
the optimum bi. It has also been proven in [I] that 

(23) 
1 

dbi 2 
= - {g(n + 2)  - g(n - i)} 

which is needed for computing the gradient of I ( ? M , ~ I  
with respect to  bi. Next, let us present Algorithms 2 
and 3, respectively, 

Algorithm 2. 
(S l )  Estimate H ~ p ( w )  and n2 using Algorithm 1. 

(S2) Find the optimum allpass FSBM G A ~ ( w )  given 
by (21) using a gradient type iterative algorithm 
such that ICM,~I is maximum where y(n) = x(n)*  
gAp(n). Then obtain the estimate pi = -bi. 

h 

h h 

Algorithm 3. 
(S l )  Estimate H M ~ ( w )  and n2,  and obtain the opti- 

mum prediction error e (n )  N U(.) * h ~ p ( n )  using 
Algorithm 1. 

(S2) Find the optimum allpass FSBM GAP(W) given 
by (21) using a gradient type iterative algorithm 
such that ICM,~I is maximum where y(n) = e(n)* 
gAp(n). Then obtain the estimate Ti = -bi. 

h 

h 

The last algorithm (Algorithm 4) estimates the sys- 
tem amplitude and phase simultaneously using inverse 
filter criteria [4-71. Chi and Wu [4] proposed a family of 
inverse filter criteria which includes Tugnait’s criteria 
[5], Wiggins’ criterion [6] and Shalvi and Weinstein’s 
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criterion [7] as special cases. The inverse filter h ~ ~ v ( n )  
is estimated by maximizing 

(24) 

where r is even and m > r ,  and 

e(n) = z (n)  * ~ I N V ( ~ )  ( 2 5 )  

It has been shown in [4] that G(n) = bu(n - r )  when 
h(n) is an arbitrary stable LTI system where b is a 
scale factor and r is an unknown time delay. Next, let 
us present Algorithm 4. 

Algorithm 4. 
(Sl)  Set integer r 2 2 (even) and integer m > r .  Let 

HINV(W) = l / H ( w )  as given by (2) with ai and 
pi replaced by -a( and -pi, respectively. 

(S2) Find the optimum H I N V ( W )  (i.e., ai and pi) using 
a gradient type iterative algorithm such that Jr,m 
is maximum. Then u2 is estimated as the sample 
variance of the obtained optimum inverse filter 
output e(.). 

It can be shown that 

1 
aai 2 

= -- {.^(TI + i) + G(n - i)} (26) 

1 
= -- {G(n + i) - G(n - i)} (27) Wi 2 

which are needed for computing the gradient of Jr,m 
with respect to ai and pi in (S2), respectively. 

Notice that when H ( w )  is not minimum-phase, the 
FSBM (noncausal stable IIR system) is well suited for 
the noncausal inverse filter HINV(W) = l /H(w) as men- 
tioned in Section 2. When H ( w )  is an FSBM, the opti- 
mum c(.) N u(n) (without scale factor and time delay 
between C(n) and u(n)). 

5. Simulation results 

In this section, let us show two sets of simulation 
results. For the first simulation, the driving input U(.) 

was assumed t o  be a zero-mean i.i.d. Exponentially dis- 
tributed random sequence. An FSBM of order p = 5 
was used for the system H ( w ) ,  whose amplitude and 
phase (solid lines) are shown in Figures la and l b ,  re- 
spectively. Thirty independent runs were performed 
using Algorithm 3 with p,,, = s = 5 ,  L = 0 and 
M = 3. Mean (dashed line) and meanfstandard de- 
viation (dotted lines) of the obtained thirty amplitude 
and phase estimates for N = 1024 and S N R  = 20 dB 

(white Gaussian noise) are also shown in Figures l a  and 
lb ,  respectively. One can see that both the amplitude 
and phase estimates are unbiased with small variance. 
Moreover, the results obtained by Algorithms 2 and 4 
are similar to those shown in Figure 1. 

The second set of simulation results for seismic de- 
convolution was obtained with u(n) assumed to be a 
Bernoulli-Gaussian sequence and the system (source 
wavelet) h(n) to be a third-order nonminimum-phase 
causal ARMA system (taken from [4]) instead of an 
FSBM. Figure 2a shows the synthetic data x ( n )  for 
N = 512 and S N R  = 20 dB (white Gaussian noise). 
Figures 2b and 2c show the (noncausal) estimate x(n) 
(dotted line) and the deconvolved signal G(n) (dotted 
line), respectively, obtained using Algorithm 4 with 
p = 12, r = 2 and m = 4, whe? the scale factor as 
well as the time delay between h(n) and h(n) (solid 
line) and the time delay between G(n) and u(n) (solid 
line) were artificially removed. One can see that x(n) 
and G(n) are good approximations to h(n) and u(n), 
respectively. The above simulation results support the 
efficacy of the proposed algorithms. 

6. Conclusions 

We have presented an FSBM for or as an approxi- 
mation to an arbitrary nonminimum-phase LTI system 
for applications in the statistical signal processing ar- 
eas mentioned in the introduction section. Based on 
the FSBM, an LPE filter for amplitude estimation to- 
gether with the CR bounds, an algorithm for obtaining 
the optimum LPE filter, and three algorithms for es- 
timating FSBM parameters were presented. All the 
gradient type iterative optimization algorithms used in 
the proposed algorithms have a computationally effi- 
cient parallel structure (FIR filter banks with only two 
nonzero coefficients 1/2 or -1/2) (see (23), (26) and 
(27)). However, the gradient computation associated 
with Algorithm 1 (see (18)) does not need any further 
processing to  the prediction error e (n ) .  Finally, two 
sets of simulation results were presented to support the 
efficacy of the proposed algorithms. 
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Figure 1. Simulation results for N = 1024 and 
S N R  = 20 dB using Algorithm 3. Mean (dashed 
lines) and mean&standard deviation (dotted lines) 
of thirty (a) amplitude and (b) phase estimates to- 
gether with the amplitude and phase (solid lines) of 
the system. 
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Figure 2. Simulation results for seismic deconvolu- 
tion ( N  = 512 and S N R  = 20 dB) using Algorithm 
4. (a) Synthetic data z(n); (b) source wavelet h(n) 
(solid line) and estimate ^h(n) (dotted line); and ( c )  
input u(n)  (solid line) and deconvolved signal G(n) 
(dotted line). 
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